

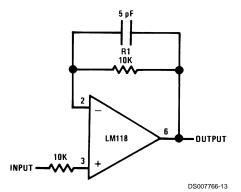
LM118/LM218/LM318 Operational Amplifiers

General Description

The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They feature a factor of ten increase in speed over general purpose devices without sacrificing DC performance.

The LM118 series has internal unity gain frequency compensation. This considerably simplifies its application since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feedforward compensation will boost the slew rate to over 150V/µs and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under 1 µs.

The high speed and fast settling time of these op amps make them useful in A/D converters, oscillators, active filters, sample and hold circuits, or general purpose amplifiers. These devices are easy to apply and offer an order of magnitude better AC performance than industry standards such as the LM709.


The LM218 is identical to the LM118 except that the LM218 has its performance specified over a −25°C to +85°C temperature range. The LM318 is specified from 0°C to +70°C.

Features

- 15 MHz small signal bandwidth
- Guaranteed 50V/µs slew rate
- Maximum bias current of 250 nA
- Operates from supplies of ±5V to ±20V
- Internal frequency compensation
- Input and output overload protected
- Pin compatible with general purpose op amps

Fast Voltage Follower

(Note 1)

Note 1: Do not hard-wire as voltage follower (R1 \geq 5 k Ω)

Absolute Maximum Ratings (Note 7)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage ±20V
Power Dissipation (Note 2) 500 mW
Differential Input Current (Note 3) ±10 mA
Input Voltage (Note 4) ±15V
Output Short-Circuit Duration Continuous
Operating Temperature Range

Lead Temperature (Soldering, 10 sec.)

Hermetic Package 300°C

Plastic Package 260°C

Soldering Information

Dual-In-Line Package

Soldering (10 sec.) 260°C

Small Outline Package

Vapor Phase (60 sec.) 215°C

Infrared (15 sec.) 220°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

ESD Tolerance (Note 8) 2000V

Electrical Characteristics (Note 5)

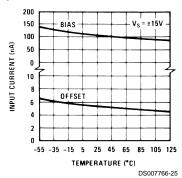
Parameter	Conditions	LM1	18/LM2	18	LM318			Units
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$T_A = 25^{\circ}C$		2	4		4	10	mV
Input Offset Current	$T_A = 25^{\circ}C$		6	50		30	200	nA
Input Bias Current	$T_A = 25^{\circ}C$		120	250		150	500	nA
Input Resistance	$T_A = 25^{\circ}C$	1	3		0.5	3		ΜΩ
Supply Current	$T_A = 25^{\circ}C$		5	8		5	10	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C, V_S = \pm 15V$	50	200		25	200		V/mV
	$V_{OUT} = \pm 10V, R_L \ge 2 k\Omega$							
Slew Rate	$T_A = 25^{\circ}C, V_S = \pm 15V, A_V = 1$	50	70		50	70		V/µs
	(Note 6)							
Small Signal Bandwidth	$T_A = 25^{\circ}C, V_S = \pm 15V$		15			15		MHz
Input Offset Voltage				6			15	mV
Input Offset Current				100			300	nA
Input Bias Current				500			750	nA
Supply Current	T _A = 125°C		4.5	7				mA
Large Signal Voltage Gain	$V_{S} = \pm 15V, V_{OUT} = \pm 10V$	25			20			V/mV
	$R_L \ge 2 k\Omega$							
Output Voltage Swing	$V_S = \pm 15V, R_L = 2 k\Omega$	±12	±13		±12	±13		V
Input Voltage Range	V _S = ±15V	±11.5			±11.5			V
Common-Mode Rejection Ratio		80	100		70	100		dB
Supply Voltage Rejection Ratio		70	80		65	80		dB

Note 2: The maximum junction temperature of the LM118 is 150°C, the LM218 is 110°C, and the LM318 is 110°C. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of 160°C/W, junction to ambient, or 20°C/W, junction to case. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

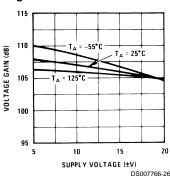
Note 3: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

Note 4: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 5: These specifications apply for $\pm 5\text{V} \le \text{V}_\text{S} \le \pm 20\text{V}$ and $-55\text{°C} \le \text{T}_\text{A} \le +125\text{°C}$ (LM118), $-25\text{°C} \le \text{T}_\text{A} \le +85\text{°C}$ (LM218), and $0\text{°C} \le \text{T}_\text{A} \le +70\text{°C}$ (LM318). Also, power supplies must be bypassed with $0.1~\mu\text{F}$ disc capacitors.

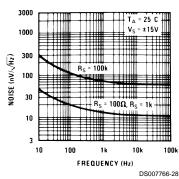

Note 6: Slew rate is tested with $V_S = \pm 15V$. The LM118 is in a unity-gain non-inverting configuration. V_{IN} is stepped from -7.5V to +7.5V and vice versa. The slew rates between -5.0V and +5.0V and vice versa are tested and guaranteed to exceed $50V/\mu s$.

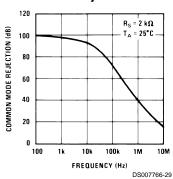
Note 7: Refer to RETS118X for LM118H and LM118J military specifications.

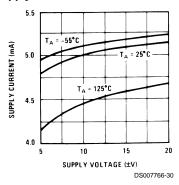

Note 8: Human body model, 1.5 k Ω in series with 100 pF.

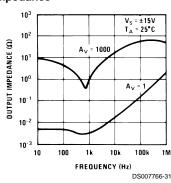
Typical Performance Characteristics LM118, LM218

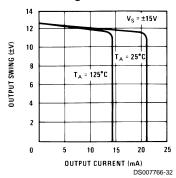
Input Current

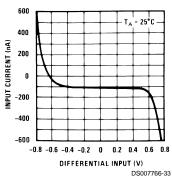

Voltage Gain

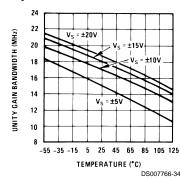

Power Supply Rejection

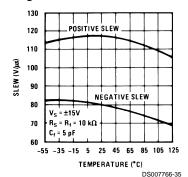

Input Noise Voltage

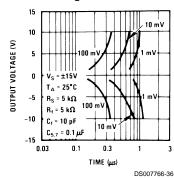

Common Mode Rejection


Supply Current

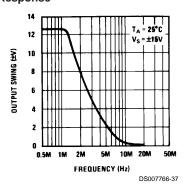

Closed Loop Output Impedance


Current Limiting

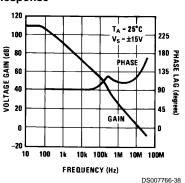

Input Current


Unity Gain Bandwidth

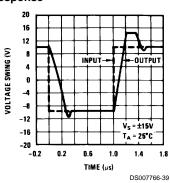
Voltage Follower Slew Rate

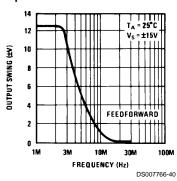


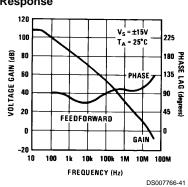
Inverter Settling Time

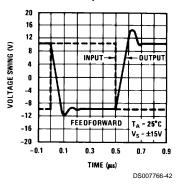


Typical Performance Characteristics LM118, LM218 (Continued)

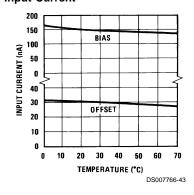

Large Signal Frequency Response


Open Loop Frequency Response

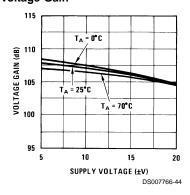

Voltage Follower Pulse Response


Large Signal Frequency Response

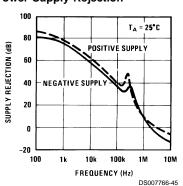
Open Loop Frequency Response



Inverter Pulse Response



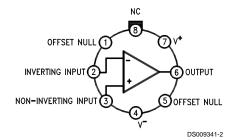
Typical Performance Characteristics LM318


Input Current

Voltage Gain

Power Supply Rejection

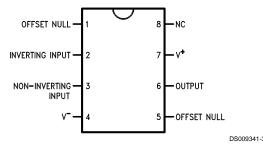
LM741 Operational Amplifier


General Description

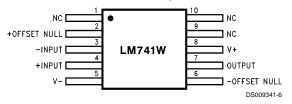
The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.

The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations. The LM741C is identical to the LM741/LM741A except that the LM741C has their performance guaranteed over a 0°C to +70°C temperature range, instead of -55°C to +125°C.

Connection Diagrams

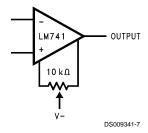

Metal Can Package

Note 1: LM741H is available per JM38510/10101


Order Number LM741H, LM741H/883 (Note 1), LM741AH/883 or LM741CH See NS Package Number H08C

Dual-In-Line or S.O. Package

Order Number LM741J, LM741J/883, LM741CN See NS Package Number J08A, M08A or N08E


Ceramic Flatpak

Order Number LM741W/883 See NS Package Number W10A

Typical Application

Offset Nulling Circuit

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 7)

	LM741A	LM741	LM741C
Supply Voltage	±22V	±22V	±18V
Power Dissipation (Note 3)	500 mW	500 mW	500 mW
Differential Input Voltage	±30V	±30V	±30V
Input Voltage (Note 4)	±15V	±15V	±15V
Output Short Circuit Duration	Continuous	Continuous	Continuous
Operating Temperature Range	−55°C to +125°C	–55°C to +125°C	0°C to +70°C
Storage Temperature Range	−65°C to +150°C	–65°C to +150°C	-65°C to +150°C
Junction Temperature	150°C	150°C	100°C
Soldering Information			
N-Package (10 seconds)	260°C	260°C	260°C
J- or H-Package (10 seconds)	300°C	300°C	300°C
M-Package			
Vapor Phase (60 seconds)	215°C	215°C	215°C
Infrared (15 seconds)	215°C	215°C	215°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering

surface mount devices.

ESD Tolerance (Note 8) 400V 400V 400V

Electrical Characteristics (Note 5)

Parameter	Conditions	LM741A			LM741			LM741C			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	T _A = 25°C										
	$R_S \le 10 \text{ k}\Omega$					1.0	5.0		2.0	6.0	mV
	$R_S \le 50\Omega$		0.8	3.0							mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_S \le 50\Omega$			4.0							mV
	$R_S \le 10 \text{ k}\Omega$						6.0			7.5	mV
Average Input Offset				15							μV/°C
Voltage Drift											
Input Offset Voltage	$T_A = 25^{\circ}C, V_S = \pm 20V$	±10				±15			±15		mV
Adjustment Range											
Input Offset Current	$T_A = 25^{\circ}C$		3.0	30		20	200		20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			70		85	500			300	nA
Average Input Offset				0.5							nA/°C
Current Drift											
Input Bias Current	$T_A = 25^{\circ}C$		30	80		80	500		80	500	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			0.210			1.5			0.8	μΑ
Input Resistance	$T_A = 25^{\circ}C, V_S = \pm 20V$	1.0	6.0		0.3	2.0		0.3	2.0		МΩ
	$T_{AMIN} \le T_A \le T_{AMAX}$	0.5									MΩ
	$V_S = \pm 20V$										
Input Voltage Range	T _A = 25°C							±12	±13		V
	$T_{AMIN} \le T_A \le T_{AMAX}$				±12	±13					V

Electrical Characteristics (Note 5) (Continued)

Parameter	Conditions	LM741A		LM741			LM741C			Units	
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Large Signal Voltage Gain	$T_A = 25^{\circ}C, R_L \ge 2 \text{ k}\Omega$										
	$V_S = \pm 20V, V_O = \pm 15V$	50									V/mV
	$V_S = \pm 15V, V_O = \pm 10V$				50	200		20	200		V/mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_L \ge 2 k\Omega$,										
	$V_S = \pm 20V, V_O = \pm 15V$	32									V/mV
	$V_S = \pm 15V, V_O = \pm 10V$				25			15			V/mV
	$V_{S} = \pm 5V, V_{O} = \pm 2V$	10									V/mV
Output Voltage Swing	$V_S = \pm 20V$										
	$R_L \ge 10 \text{ k}\Omega$	±16									V
	$R_L \ge 2 k\Omega$	±15									V
	V _S = ±15V										
	$R_L \ge 10 \text{ k}\Omega$				±12	±14		±12	±14		V
	$R_L \ge 2 k\Omega$				±10	±13		±10	±13		V
Output Short Circuit	$T_A = 25^{\circ}C$	10	25	35		25			25		mA
Current	$T_{AMIN} \le T_A \le T_{AMAX}$	10		40							mA
Common-Mode	$T_{AMIN} \le T_A \le T_{AMAX}$										
Rejection Ratio	$R_S \le 10 \text{ k}\Omega, V_{CM} = \pm 12V$				70	90		70	90		dB
	$R_S \le 50\Omega$, $V_{CM} = \pm 12V$	80	95								dB
Supply Voltage Rejection	$T_{AMIN} \le T_A \le T_{AMAX}$										
Ratio	$V_S = \pm 20V$ to $V_S = \pm 5V$										
	$R_S \le 50\Omega$	86	96								dB
	$R_S \le 10 \text{ k}\Omega$				77	96		77	96		dB
Transient Response	T _A = 25°C, Unity Gain										
Rise Time			0.25	0.8		0.3			0.3		μs
Overshoot			6.0	20		5			5		%
Bandwidth (Note 6)	$T_A = 25^{\circ}C$	0.437	1.5								MHz
Slew Rate	T _A = 25°C, Unity Gain	0.3	0.7			0.5			0.5		V/µs
Supply Current	$T_A = 25^{\circ}C$					1.7	2.8		1.7	2.8	mA
Power Consumption	$T_A = 25^{\circ}C$										
	$V_S = \pm 20V$		80	150							mW
	$V_S = \pm 15V$					50	85		50	85	mW
LM741A	V _S = ±20V										
	$T_A = T_{AMIN}$			165							mW
	$T_{A} = T_{AMAX}$ $V_{S} = \pm 15V$			135							mW
LM741	V _S = ±15V										
	$T_A = T_{AMIN}$					60	100				mW
	$T_A = T_{AMAX}$					45	75				mW

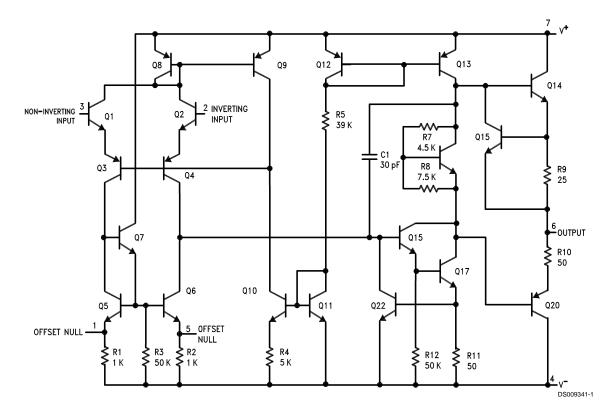
Note 2: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Electrical Characteristics (Note 5) (Continued)

Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_j max. (listed under "Absolute Maximum Ratings"). $T_j = T_A + (\theta_{jA} P_D)$.

Thermal Resistance	Cerdip (J)	DIP (N)	HO8 (H)	SO-8 (M)
θ_{jA} (Junction to Ambient)	100°C/W	100°C/W	170°C/W	195°C/W
θ _{jC} (Junction to Case)	N/A	N/A	25°C/W	N/A

Note 4: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.


Note 5: Unless otherwise specified, these specifications apply for $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ}C \le T_A \le +70^{\circ}C$.

Note 6: Calculated value from: BW (MHz) = 0.35/Rise Time(µs).

Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.

Note 8: Human body model, 1.5 k Ω in series with 100 pF.

Schematic Diagram

